SYNTHESIS OF 1-HYDROXYAZETIDINES AND THEIR CONVERSION INTO 1,4-DIACETOXY-2-AZETIDINONES

M.L.M. Pennings, D. Kuiper and D.N. Reinhoudt*

(Laboratory of Organic Chemistry,
Twente University of Technology, Enschede, The Netherlands)

Abstract: 1-Hydroxyazetidines (5), prepared by reductive cyclization of O-benzyl- β -tosyloxy oximes $\underline{1}$ and subsequent debenzylation, can be oxidized selectively either to four-membered cyclic nitrones (6 and 7) or to 1,4-diacetoxy-2-azetidinones (9).

Recently we have reported a novel route to N-acetoxy β -lactams by oxidation of the corresponding four-membered cyclic nitrones (2,3-dihydroazete 1-oxides) 1 . We have also found that 1-hydroxyazetidines obtained by reduction of the corresponding four-membered cyclic nitrones, could be oxidized with HgO to the same nitrones in almost quantitative yields 2 . Furthermore, the C-4 unsubstituted 1-hydroxyazetidine could be converted directly to the 1-acetoxy-2-azetidinone without isolating the intermediate nitrone by reaction with \underline{two} equivalents of lead tetraacetate 1b , 2 . Since the synthesis of four-membered cyclic nitrones is virtually limited to the reaction of nitroalkenes with ynamines 3 , an alternative and more general route to these heterocycles seemed to be the oxidation of the corresponding 1-hydroxyazetidines. We wish to report here the preliminary results of a study on the synthesis and the oxidation of 1-hydroxyazetidines 4 .

We anticipated that 1-hydroxyazetidines might be synthesized by cyclization of γ -tosyloxy hydroxylamine derivatives, prepared by reduction of the corresponding oximes. Oximation of 3,3-dimethyl-4-tosyloxy-2-butanone⁵ gave the corresponding oxime <u>la</u> in a yield of 92% (m.p. 119.5-121.5°C, from diisopropyl ether)⁶. Reduction of this oxime under relatively mild conditions (NaCNBH $_3$ /CH $_3$ COOH, 16 h at room temperature⁸) afforded 3,4,4-trimethylisoxazolidine <u>3</u> in a yield of 61% (b.p. 62-64°C/13 mm Hg, n_D^{20} 1.4444). MS: M $^+$ 115.10 (C $_6$ H $_1$ 3NO). 1 H NMR δ (CDCl $_3$) 0.97 and 1.11 (s, 6H,CH $_3$), 1.03 (d,3H,CH $_3$), 3.02 (q,1H,H-3), 3.58 and 3.70 (AB,2H,J=7.3 Hz,H-5), 4.6 (bs,1H,NH). 3 2.HCl: dec. > 120°C, from chloroform/ethyl acetate 9 . Obviously the reduction of the oxime is followed by a surprizing facile cyclization of the hydroxylamine derivative 3 2a via intramolecular alkylation of the hydroxylamine moiety at oxygen.

Therefore we prepared the 0-benzyl oxime $\underline{1b}$ from 0-benzylhydroxylamine and 3,3-dimethyl-4-tosyloxy-2-butanone, in a yield of 96% (m.p. 83-84.5°C, from diisopropyl ether) 9 . Reduction of $\underline{1b}$ with NaCNBH $_3$ in acetic acid (16 h, 35°C) gave the 1-ben-

zyloxy-2,3,3-trimethylazetidine $\underline{4a}$ in a yield of 63% (b.p. 62-64°C/0.5 mm Hg; n_D^{20} 1.4909) . MS: M+ 205.15 ($C_{13}H_{19}NO$). H NMR δ (CDCl $_3$) 3.27 (q,1H,H-2), 3.02 and 3.35 (AB,2H,J=7 Hz,H-4). C NMR δ (CDCl $_3$) 30.4 (s,C-3), 68.3 (t,C-4), 73.8 (d,C-2). Catalytic debenzylation of $\underline{4a}$ with Pd/C in acetic acid afforded the 1-hydroxyazetidine $\underline{5a}$ in a yield of 71% (b.p. 58-60°C/5 mm Hg, n_D^{20} 1.4363). MS: M+ 115.10 ($C_6H_{13}NO$). H NMR δ (CDCl $_3$) 3.25 (q,1H,H-2), 3.06 and 3.37 (AB,2H,J=7.3 Hz,H-4), 6.9 (bs,1H,OH). C NMR δ (CDCl $_3$) 30.7 (s,C-3), 69.3 (t,C-4), 74.7 (d,C-2).

In a similar way, oxime 1c was prepared from 2,2-dimethyl-3-tosyloxypropanal and 0-benzylhydroxylamine in a yield of 96% (oil). Reduction of the crude oxime 1c as described for 1a gave the hydroxylamine derivative 2c in a yield of 92% (oil). However, 2c did not undergo cyclization even on prolonged reaction in acetic acid, and could be characterized as the hydrochloride (m.p. $110-119^{\circ}$ c, dec., from chlororoform/ethyl acetate) Without further purification 2c was cyclized in diethyl ether at 20° C by the rapid addition of a n-butyl lithium solution in hexane, to the 1-benzyloxyazetidine 4b in a yield of 53% (b.p. $62-64^{\circ}$ C/0.6 mm Hg, $n_{\rm D}^{20}$ 1.4960) . MS: M 191.13 ($C_{12}H_{17}NO$). H NMR &(CDCl₃) 1.17 (s,6H,CH₃), \sim 3.3 (bs,4H,NCH₂). NMR &(CDCl₃) 28.5 (s,C-3), 70.3 (t,NCH₂). Debenzylation of 4b afforded 3,3-dimethyl-1-hydroxyazetidine (5b) in a yield of 61% (b.p. $56-58^{\circ}$ C/5 mm Hg, $n_{\rm D}^{20}$ 1.4359). MS: M 101.08 ($C_{5}H_{11}NO$). H NMR &(CDCl₃) 1.19 (bs,6H,CH₃), \sim 3.4 (bAB,4H,NCH₂), \sim 7.6 (bs,1H,OH). 13C NMR &(CDCl₃) 28.1 (s,C-3), 71.3 (t,NCH₂) 13.

Oxidation of 1-hydroxyazetidine $\frac{5a}{1}$ with yellow mercury(II) oxide in dichloromethane gave an oil, which according to $\frac{1}{1}$ H NMR spectroscopy contained $\sim 30\%$ of the nitrone $\frac{6a}{1}$. The absorptions in the $\frac{1}{1}$ H NMR spectrum at $\delta 1.32$ (s), $\delta 1.93$ (t,J=1.95 Hz, and $\delta 3.96$ (q,J=1.95 Hz) are in good agreement with those reported previously by Black et al. $\frac{7}{1}$ Obviously this method of oxidation is to drastic, since nitrone $\frac{6a}{1}$ was strongly contaminated ($\sim 70\%$) with products that arise from decomposition or polymerization. Oxidation of $\frac{5a}{1}$ with "active lead(IV)oxide" which has been used for the preparation of sensitive and unstable nitrones from the corresponding hydroxylamines, gave a mixture of two isomeric four-membered cyclic nitrones in quantity of the strong product of the preparation of two isomeric four-membered cyclic nitrones in quantity of the preparation of two isomeric four-membered cyclic nitrones in quantity of the preparation of two isomeric four-membered cyclic nitrones in quantity of the preparation of two isomerics.

$$\frac{5a}{6a} = \frac{PbO_2}{32} + \frac{N}{100} + \frac{N}{100} = \frac{6a}{100} = \frac{7}{100} + \frac{1}{100} = \frac{1}{100} =$$

titative yield. According to 1 H NMR spectroscopy in addition to $\underline{6a}$ (78%) a second nitrone ($\underline{6b}$) was formed (22%) by a different mode of hydrogen abstraction. 1 H NMR $_{0}$ 6 (CDCl $_{3}$) 1.23 and 1.36 (s,6H,CH $_{3}$), 1.41 (d,3H,CH $_{3}$), 4.14 (q,1H,H-2), 6.74 (s,1H, N=CH).

Oxidation of 1-hydroxyazetidine $\underline{5b}$, in which there is only one possible way of hydrogen abstraction gave the four-membered cyclic nitrone $\underline{7}$ as an oil in a yield of \sim 70%. 1 H NMR δ (CDCl $_3$) 1.39 (s,6H,CH $_3$), 4.04 (s,2H,H-2), 6.86 (s,1H,N=CH). Reaction of this crude oxidation product with dimethyl acetylenedicarboxylate (DMAD) quantitatively gave the cycloadduct $\underline{8}$ (oil, purified by filtration of an ethyl acetate solution through florisil). The structure of $\underline{8}$ was proven by comparison of the 1 H and 13 C NMR spectroscopic data with those of similar cycloadducts of four-membered cyclic nitrones with DMAD 15 . MS: M $^+$ 241.09 (C $_{11}$ H $_{15}$ NO $_{5}$). 1 H NMR δ (CDCl $_3$) 1.14 and 1.45 (s,6H,CH $_3$), 3.62 and 3.79 (dAB,2H, $_J$ =10 Hz, $_J$ \sim 1 Hz,H-7), 3.75 and 3.91 (s,6H,OCH $_3$), 4.82 (t,1H, $_J$ \sim 1 Hz,H-5).

Oxidation of 1-hydroxyazetidine $\underline{5a}$ with three equivalents of lead tetraacetate in toluene at ${}^{0}\text{C}$, produces the 1,4-diacetoxy-2-azetidinone $\underline{9}$ in a yield of 71% (m.p. $68.5-70^{\circ}\text{C}$, from petroleum ether $60-80^{\circ})^{9}$. MS: M⁺ +1 230.10 ($C_{10}^{\text{H}}_{16}^{\text{NO}}_{5}$); IR(KBr) 1810 (NOCOCH₃), 1785 (C=O) and 1745 cm⁻¹ (OCOCH₃); ¹H NMR &(CDCl₃) 1.36 (s,6H,CH₃), 1.78 (s,3H,CH₃), 2.07 and 2.19 (s,6H,COCH₃). ¹³C NMR &(CDCl₃) 55.0 (s,C-3), 97.2 (s,C-4), 169.0 (s), 168.3 (s) and 167.1 (s), (C=O and OC=O). It has been reported in the literature that oxidation of N,N-dibenzylhydroxylamine proceeds via the nitrone and also gives the corresponding diacetoxy amide derivative 16,17 .

The above results show that 1-hydroxyazetidines can be synthesized by cyclization of γ -tosyloxy hydroxylamine derivatives, and that they can be oxidized in good yields to the corresponding nitrones with "active PbO $_2$ ". Oxidation with lead tetraacetate gives a 4-acetoxy-2-azetidinone derivative, a type of 2-azetidinone that is a precursor for biologically important bicyclic β -lactam derivatives 18 .

<u>Acknowledgement</u>. This investigation was supported by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for Advancement of Pure Research (ZWO).

References and Notes

- la. M.L.M. Pennings and D.N. Reinhoudt Tetrahedron Lett. 1981, 22, 1153.
- b. M.L.M. Pennings, D.N. Reinhoudt, S. Harkema and G.J. van Hummel <u>J. Org. Chem.</u>, in the press.
- 2. M.L.M. Pennings and D.N. Reinhoudt Tetrahedron Lett. 1982, 23, 1003.
- 3. M.L.M. Pennings and D.N. Reinhoudt J. Org. Chem. 1982, 47, 1816.
- 4. Two other examples of 1-hydroxyazetidines have been reported previously: R.G. Kostyanovskii, A.V. Prosyanik and V.I. Markov Chem. Abstr. 1974, 81, 25476v; J. Harnisch and G. Szeimies Chem. Ber. 1979, 112, 3914.
- 5. W.C. Lumma, Jr. and O.H. Ma J. Org. Chem. 1970, 35, 2391.
- 6. This compound has been described in the literature, but spectral and physical data were not reported 7.
- 7. D.St.C. Black, R.F.C. Brown, B.F. Dunstan and S. Sternhell <u>Tetrahedron Lett</u>. 1974, 4283.
- 8. D.D. Sternbach and W.C.L. Jamison Tetrahedron Lett. 1981, 22, 3331.
- 9. Satisfactory elemental analyses were obtained for this compound (C,H,N + 0.3%).
- 10. This compound was prepared by oxidation of 2,2-dimethyl-3-tosyloxypropanol¹¹ with pyridinium chlorochromate: m.p. 67-69°C (dec.), from diisopropyl ether; m.p. Lit.¹² 61.3°C.
- 11. L.J. Dolby, A. Meneghini and T. Koizumi J. Org. Chem. 1968, 33, 3060.
- 12. F. Nerdel , D. Frank, H.-D. Lengert and P. Weyerstahl Chem. Ber. 1968, 101, 1850.
- 13. The methyl singlet in the 1 H NMR spectrum of 5b at δ 1.19 broadened upon cooling of the CDCl $_3$ solution, and further cooling to about 0° C gave rise to two sharp singlets at δ 1.16 and δ 1.22. From the coalescence temperature ($T_{\rm C} = 28^{\circ}$ C) and the chemical shift difference of the two singlets ($\Delta \nu = 4.6$ Hz) a ΔG^{\neq} value of 16.3 kcalmol $^{-1}$ for the nitrogen inversion process was calculated; a detailed study will be reported elsewhere.
- 14. R. Kuhn and I. Hammer Chem. Ber. 1950, 83, 413.
- 15. M.L.M. Pennings, G. Okay, D.N. Reinhoudt, S. Harkema and G.J. van Hummel \underline{J} . Org. Chem., in the press
- 16. L.A. Neiman, S.V. Zhukora and V.A. Tyurikov Tetrahedron Lett. 1973, 1889.
- 17. For a recent review of the lead tetraacetate oxidation of nitrones see: E. Breuer in "The Chemistry of Functional Groups", Ed. S. Patai, Interscience, 1982, Supplement F, Part I, p. 459.
- 18. See for instance: P.J. Reider, R. Rayford, E.J.J. Grabowski <u>Tetrahedron Lett</u>. 1982, 23, 379.